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Abstract

Molecular representation learning contributes to multiple
downstream tasks such as molecular property prediction and
drug design. To properly represent molecules, graph con-
trastive learning is a promising paradigm as it utilizes self-
supervision signals and has no requirements for human anno-
tations. However, prior works fail to incorporate fundamental
domain knowledge into graph semantics and thus ignore the
correlations between atoms that have common attributes but
are not directly connected by bonds. To address these issues,
we construct a Chemical Element Knowledge Graph (KG) to
summarize microscopic associations between elements and
propose a novel Knowledge-enhanced Contrastive Learning
(KCL) framework for molecular representation learning.
KCL framework consists of three modules. The first module,
knowledge-guided graph augmentation, augments the orig-
inal molecular graph based on the Chemical Element KG.
The second module, knowledge-aware graph representation,
extracts molecular representations with a common graph en-
coder for the original molecular graph and a Knowledge-
aware Message Passing Neural Network (KMPNN) to encode
complex information in the augmented molecular graph. The
final module is a contrastive objective, where we maximize
agreement between these two views of molecular graphs. Ex-
tensive experiments demonstrated that KCL obtained supe-
rior performances against state-of-the-art baselines on eight
molecular datasets. Visualization experiments properly inter-
pret what KCL has learned from atoms and attributes in the
augmented molecular graphs. Our codes and data are avail-
able at https://github.com/ZJU-Fangyin/KCL.

1 Introduction
Accurately predicting the properties of molecules lies at
the core of fundamental tasks in the chemical and phar-
maceutical communities. In light of deep learning, several
supervised models have been investigated to learn molec-
ular representations through predicting molecular proper-
ties (Gilmer et al. 2017; Yang et al. 2019; Song et al. 2020).

*These authors contributed equally.
†Corresponding Author.
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While effective, these methods face the challenges of limited
labeled data, as laboratory experiments are expensive and
time-consuming to annotate data. Moreover, due to the enor-
mous diversity of chemical molecules, these works could
barely generalize to unseen cases (Hu et al. 2020; Rong et al.
2020), which greatly hinders practical applicability.

One line of works to alleviate these issues is to design
pretext tasks to learn node or graph representations without
labels. Several attempts have been made to investigate differ-
ent strategies for such tasks, including masked attribute pre-
diction (Hu et al. 2020), graph-level motif prediction (Rong
et al. 2020), and graph context prediction (Liu et al. 2019).
The other line follows a contrastive learning framework
from the computer vision domain (Wu et al. 2018b; Chen
et al. 2020), which aims to construct similar and dissimilar
view pairs via graph augmentations, including node drop-
ping, edge perturbation, subgraph extraction, and attribute
masking (You et al. 2020). Due to the smaller amount of pa-
rameters and simpler predefined tasks, we adopt contrastive
learning in our work.

However, unlike images, contrastive learning on graphs
has its unique challenges. First, the structural informa-
tion and semantics of the graphs vary significantly across
domains, which makes it difficult to design a universal
augmentation scheme for graphs. Especially for molecular
graphs, removing or adding a chemical bond or a func-
tional group will drastically change their identities and prop-
erties (You et al. 2020). More importantly, existing graph
contrastive learning models mainly focus on graphs struc-
tures, without considering fundamental domain knowledge
into graph semantics. Another neglected defect is that they
model the atoms in molecular graphs as individuals that
can only interact when there exists an edge (i.e., a chemi-
cal bond), failing to consider the correlations between atoms
(e.g., commonalities between atoms of the same attributes).

To overcome these challenges, we enrich the molecular
graph contrastive learning by incorporating domain knowl-
edge. Since chemical domain knowledge is crucial prior, we
hypothesize that the attributes of elements (atom is an in-
stance of element) can affect molecular properties. To ob-
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Figure 1: Chemical Element KG builds associations between
atoms that are not directly connected by bonds but related in
fundamental chemical attributes, as denoted by red arrows.

tain the domain knowledge and build microscopic correla-
tions between atoms, we first construct a Chemical Element
Knowledge Graph (KG) based on Periodic Table of Ele-
ments 1. The Chemical Element KG describes the relations
between elements (denoted in green in Figure 1) and their
basic chemical attributes (e.g., periodicity and metallicity,
denoted in red in Figure 1). Then we augment the origi-
nal molecular graph with the guidance of Chemical Element
KG, as shown in Figure 1, which helps to establish the asso-
ciations between atoms that have common attributes but are
not directly connected by bonds. In this way, the augmented
molecular graph contains not only structural topologies but
also the fundamental domain knowledge of elements.

On top of that, we propose a novel Knowledge-enhanced
Contrastive Learning (KCL) framework to improve the
molecular representation with three modules. (1) The
knowledge-guided graph augmentation module leverages
Chemical Element KG to guide the graph augmentation
process. While preserving the topology structure, the aug-
mented molecular graph also builds associations that can-
not be observed explicitly. (2) The knowledge-aware graph
representation module learns molecular representations. We
adopt a commonly used graph encoder for the original
molecular graphs while designing a Knowledge-aware Mes-
sage Passing Neural Network (KMPNN) encoder to provide
heterogeneous attentive message passing for different types
of knowledge in the augmented molecular graph. (3) The
contrastive objective module trains the encoders to maxi-
mize the agreement between positives and the discrepancy
between hard negatives. To the best of our knowledge, it is
the first work to construct KG based on fundamental knowl-
edge of chemical elements and guide molecular contrastive
learning. Our contributions can be summarized as follows:

• We construct a Chemical Element KG, which describes
the relations between elements and their chemical at-
tributes. It can assist various molecular learning tasks be-
yond the ones in this paper.

• We develop a new contrastive learning framework (KCL)
with three modules: knowledge-guided graph augmen-
tation, knowledge-aware graph representation, and con-
trastive objective.

• We evaluate KCL on eight various molecular datasets un-
der both fine-tune and linear protocols and demonstrate
its superiority over the state-of-the-art methods.

1https://ptable.com

2 Related Works
Molecular Representation Learning In light of deep
learning, Duvenaud et al. first applied convolutional net-
works to map molecules into neural fingerprints. Subse-
quent works fed SMILES (a line notation for describing
the structure of chemical species using short ASCII strings)
into recurrent networks-based models to produce molecu-
lar representations (Jastrzebski et al. 2016; Xu et al. 2017).
To utilize topology information in the molecular graph,
MPNN (Gilmer et al. 2017) and its variants DMPNN (Yang
et al. 2019), CMPNN (Song et al. 2020), CoMPT (Chen
et al. 2021) leverage the node and edge attributes during
message passing. However, all the above-mentioned works
are supervised models, require expensive annotations, and
could barely generalize to unseen molecules, which greatly
hinders the feasibility in practice.

Self-Supervised Learning on Graphs Self-supervised
learning addresses such a limitation by pre-training molecu-
lar graphs. Liu et al. exploited the idea of N-gram in NLP
and conducted vertices embedding by predicting the ver-
tices attributes. Hu et al. designed two pre-training tasks,
i.e., predicting neighborhood context and node attributes,
to learn meaningful node representations, then using graph-
level multi-task pre-training to refine graph representations.
Alternatively, GROVER (Rong et al. 2020) incorporated
a Transformer-style architecture and learned node embed-
dings by predicting contextual properties and motif infor-
mation. Other works (Shang et al. 2019; Sun, Lin, and Zhu
2020; Yasunaga and Liang 2020) utilized similar strategies
for either node or graph level pre-training.

Contrastive Learning on Graphs Contrastive learning is
a widely-used self-supervised learning algorithm. Its main
idea is to make representations of positive pairs that agree
with each other and negatives disagree as much as possible
(You et al. 2020). One key component is to generate infor-
mative and diverse views from each data instance. Previous
graph augmentations generated views by randomly shuffling
node features (Velickovic et al. 2019; Hassani and Ahmadi
2020), removing edges or masking nodes (You et al. 2020).
However, these perturbations may hurt the domain knowl-
edge inside graphs, especially for chemical compounds.
MoCL (Sun et al. 2021) proposed a substructure substitu-
tion and incorporated two-level knowledge to learn richer
representations, CKGNN (Fang et al. 2021) selected posi-
tive pairs via fingerprint similarity. But they ignore the fun-
damental domain knowledge.

3 Methodology
3.1 Problem Formulation
A molecule can be represented as a graph G = {V, E},
where |V| denotes a set of n atoms (nodes) and |E| denotes
a set of m bonds (edges). Each edge is bidirectional. Let
Nv denote the set of node v’s neighbors. We use xv to rep-
resent the initial features of node v, and euv as the initial
features of edge (u, v). Let h(v) be the node hidden state
and h(euv) for the edge hidden state. In the setting of self-
supervised graph representation learning, our goal is to learn

https://ptable.com


Figure 2: An illustrative example for KCL. We ignore edge directions in four molecular graphs due to space limitation (the direc-
tion of an edge between an attribute and an atom is from the former to the latter, while an edge between atoms is bidirectional).
Module 1: Knowledge-guided graph augmentation converts the original molecular graph G into the augmented molecular graph
G′ based on Chemical Element KG. Module 2: Knowledge-aware graph representation captures representations from two graph
views separately. Module 3: Contrastive objective trains the encoders and the projection head to maximize agreement between
positives and disagreement between hard negatives (e.g., Gj act as the hard negative of Gi) via a contrastive loss.

graph encoders f : G 7→ Rd which maps an input graph to
a vector representation without the presence of any labels.
The learned encoders and representations can then be used
for downstream tasks.

3.2 Overview
Figure 2 shows the overview of our work. We propose a
contrastive learning framework called KCL with three mod-
ules: (1) Knowledge-guided graph augmentation transforms
any given molecule graph G into an augmented molecular
graph G′ with the guidance of Chemical Element KG. (2)
Knowledge-aware graph representation aims to extract rep-
resentations from G and G′ respectively. (3) Contrastive ob-
jective aims to project representations to the space where
contrastive loss is applied and train the encoders to maxi-
mize the agreement between positive pairs and the discrep-
ancy between hard negatives.

3.3 Knowledge-guided Graph Augmentation
Chemical Element KG Construction. The prerequisite
of our work is to collect the fundamental chemical domain
knowledge. Previous attempts (Delmas et al. 2021; Lin et al.
2020) built KGs from the public chemical database and sci-
entific literature to extract associations between chemicals
and diseases or drug pairs, but none of them considered
the fundamental information in chemical elements. In con-
trast, we crawl all the chemical elements and their attributes
from the Periodic Table of Elements. Each element con-
tains more than 15 attributes, including metallicity, periodic-
ity, state, weight, electronegativity, electron affinity, melting
point, boiling point, ionization, radius, hardness, modulus,
density, conductivity, heat, and abundance.

After that, the extracted triples in the form of (Gas, is-
StateOf, Cl) are constructed in KG, indicating that there are
specified relations between elements and attributes. How-
ever, since each element has some different continuous at-
tributes, it is difficult for KG to model their connections. To

Chemical Element KG
Elements 118
Attributes 107
Entities 225
Relation Types 17
KG Triples 1643

Table 1: The statistics of Chemical Element KG.

overcome this difficulty, we histogramize the continuous at-
tributes and convert them into discrete labels (e.g., Density-
Group1, RadiusGroup2). The statistics of Chemical Element
KG are summarized in Table 1.

Graph Augmentation. Since most existing augmentation
approaches (e.g., node dropping and edge perturbation) vio-
late the chemical semantic inside molecules and ignore the
influence of fundamental knowledge on graph semantics, we
address these issues by proposing a knowledge-guided graph
augmentation module with the guidance of Chemical Ele-
ment KG. Specifically, as shown in Figure 2, we extract 1-
hop neighbor attributes (nodes in red) of atoms (nodes in
green) in a molecule from Chemical Element KG and add
the triples as edges (edges in red). For example, we add a
node “Gas” and an edge from “Gas” to “Cl” to the orig-
inal molecular graph based on the triple (Gas, isStateOf,
Cl). Note that the direction of each edge between the at-
tribute and the atom is from the former to the latter, while
the edges between atoms are bidirectional. Then we obtain
an augmented molecular graph, in which the original molec-
ular structure is preserved, and neighborhood topologies for
atom-related attributes are introduced.

While preserving the topology structure, the augmented
molecular graph G′ also considers the fundamental domain
knowledge within elements, as well as the microscopic asso-
ciations between atoms that have common attributes but are
not directly connected by bonds. The augmented molecular
graph thus contains richer and more complex information,
and is treated as a positive sample in contrastive learning.



3.4 Knowledge-aware Graph Representation
Knowledge Feature Initialization. Different from the
random initialization of atoms and bonds, in order to ob-
tain the initial features of attributes and relations in the
augmented molecular graph, we adopt the commonly used
KG embedding method, RotateE (Sun et al. 2019), to train
Chemical Element KG. In this way, the initial features can
capture the structural information of the triples. The neces-
sity of this step is proved in subsequent experiments. More
details are in A.1 of Appendix.

KMPNN Encoder. Although various architectures can be
adopted, since the augmented molecular graphs are com-
plex irregular-structured data that combines two types of in-
formation (i.e., the structure knowledge implied in molec-
ular bonds and domain knowledge extracted from Chemi-
cal Element KG), we design a KMPNN encoder as f ′(·) to
learn their graph-level representations. The key idea behind
KMPNN is that we provide two types of message passing
for different types of neighbors, and assign them different
attention according to their importance.

Algorithm 1 describes the KMPNN encoding process.
The input of the encoder is the augmented molecular graph
G′ = {V, E}, including initial features of all nodes xv ,
∀v ∈ V , and features of all edges euv , ∀(u, v) ∈ E . K
rounds of message passing are then applied to all nodes. We
enable heterogeneous message passing with two MSG func-
tions, where MSG1(·) is applied to neighbors representing
atoms, and MSG0(·) is applied to attributes in the neighbor-
hood. The indicator function 1[·] is used to index the selec-
tion of these functions, 1[u=a] = 1 if u represents an atom
else 0. In this way, the nodes with the same type of knowl-
edge share parameters during message passing.

Apart from the above, we extend message passing by self-
attention. We compute attention coefficients and normalize
them with the softmax function to make coefficients easily
comparable across different nodes. Following (Velickovic
et al. 2018), the coefficients can be expressed as:

αuv =
exp

(
LeakyReLU

(
aT [Whu||Whv]

))∑
k∈Nu

exp (LeakyReLU (aT [Whu||Whk]))
, (1)

where ·T represents transposition and || is the concatena-
tion operation. The attention mechanism is implemented as
a single-layer feedforward neural network, parametrized by
a weight vector a and followed by a LeakyRELU activation.

Once obtained, the normalized attention coefficients are
used to compute a linear combination of the features corre-
sponding to them:

MSG0 = αuvW 0h
k−1(euv) · hk−1(u), (2)

where W 0 denotes the weight matrix operating on incom-
ing relations. This attentive message passing function allows
for assigning different attention values to neighbor nodes,
based on the intuition that different attributes have different
importance to the atom.

Since the messages delivered by different neighbor atoms
to the central atom also have various importance, atoms in
the neighborhood follow a common process with different
parameters:

MSG1 = βuvW 1h
k−1(euv) · hk−1(u), (3)

Algorithm 1: KMPNN encoding algorithm.
Input: The augmented molecular graph G′ = {V, E};
message function MSG(·); aggregate function AGG; update
function U.
Output: Graph embedding hG′ .

1: h0(v)← xv , ∀v ∈ V; h0(euv)← euv , ∀(u, v) ∈ E
2: for k = 1, . . . ,K do
3: for v ∈ V do
4: mk(v)← AGG({MSG1[u=a](h

k−1(euv),h
k−1(u)),

∀u ∈ N (v)})
hk(v)← U(hk−1(v),mk(v))

5: end for
6: end for
7: hG′ ← READOUT({hK(v),∀v ∈ V})

where βuv is the attention coefficients between atoms, W1

is the weight matrix of incoming bonds.
In the message diffusion module, we collect the messages

from their neighboring edges in message aggregation,

mk(v) =
∑

k∈Nu

MSG(hk−1(euv),h
k−1(u)), (4)

and apply GRU as the update function.

hk(v) = GRU(hk−1(v),mk(v)), (5)

where GRU is the Gated Recurrent Unit introduced in (Cho
et al. 2014). After K steps’ iteration, a readout operator is
applied to get a graph-level representation for the molecule:

hG′ = Set2set(hK(v)), (6)

where set2set (Vinyals, Bengio, and Kudlur 2016) is specif-
ically designed to operate on sets and have more expressive
power than simply summing the final node states.

GNN-based Encoder. There is no constraint of network
architecture for f(·). We opt for simplicity and adopt the
commonly used GCN (Kipf and Welling 2017) to obtain
hG = f(G), which is the output after weighted sum and
max pooling readout.

3.5 Contrastive Objective
Projection Head. A non-linear transformation g(·) named
projection head maps both the original and augmented repre-
sentations to another latent space where the contrastive loss
is calculated, as advocated in (Chen et al. 2020). In KCL, a
two-layer perceptron (MLP) is applied to obtain z = g(hG)
and z′ = g(hG′). Note that after pre-training is completed,
we throw the projection head away and only use the en-
coders for downstream tasks.

Negative Mining. Instead of randomly choose graphs
other than the anchor instance as negatives (You et al. 2020;
Sun et al. 2021), we consider an additional hard negative
mining scheme by treating molecules similar to the an-
chor instance as negatives. Specifically, we represent each
molecule by its Morgan Fingerprints (Rogers and Hahn
2010), which perceive the presence of specific circular sub-
structures around each atom in a molecule and encode it in a



fixed length binary vector. Then we calculate the molecular
similarity through their Tanimoto coefficient (Bajusz, Rácz,
and Héberger 2015):

s(e1, e2) =
N12

N1 +N2 −N12
, (7)

where e1, e2 denotes the fingerprints, N1, N2 denotes the
number of 1s in e1, e2 respectively, and N12 denotes the
number of 1s in the intersection of e1, e2. In order to en-
sure all molecules have negative samples, instead of setting a
fixed threshold, we sorted samples by similarity and selected
a batch of most similar molecules as the negative samples.

Contrastive Loss. We augmented a minibatch of N simi-
lar molecular graphs with knowledge-guided graph augmen-
tation, resulting in a total of 2N graphs. Following (You
et al. 2020; Chen et al. 2020), given a positive pair, we treat
the other 2(N−1) graphs within the same minibatch as hard
negative samples. We utilize NT-Xent as our objective func-
tion like in (Hjelm et al. 2019; Chen et al. 2020; You et al.
2020; Carse, Carey, and McKenna 2021). The training ob-
jective for (Gi,G′i) is defined as

`i = − log
esim(zi,z

′
i)/τ∑N

j=1

(
esim(zi,z′

j)/τ + esim(z
′
i,zj)/τ

) , (8)

where τ denotes the temperature parameter and sim(z1, z2)
is the cosine similarity z>

1 z2

‖z1‖·‖z2‖ . The final loss is computed
across all positive pairs in the minibatch.

4 Experiments
In this section, we conduct extensive experiments to exam-
ine the proposed method by answering the following ques-
tions:

Q1: How does KCL perform compared with state-of-the-
art methods for molecular property prediction?

Q2: Does the knowledge-guided graph augmentation in
Module 1 learns better representations than general augmen-
tations?

Q3: How do knowledge feature initialization and graph
encoders in Module 2 affect KCL?

Q4: How useful are the self-supervised contrastive learn-
ing and hard negative strategy in Module 3?

Q5: How can we interpret KCL(KMPNN) from a domain-
specific perspective?

4.1 Experimental Setup
Pre-training Data Collection. We collect 250K unlabeled
molecules sampled from the ZINC15 datasets (Sterling and
Irwin 2015) to pre-train KCL.

Fine-tuning Tasks and Datasets. We use 8 benchmark
datasets from the MoleculeNet (Wu et al. 2018a) to per-
form the experiments, which cover a wide range of molec-
ular tasks such as quantum mechanics, physical chemistry,
biophysics, and physiology. For each dataset, as suggested
by (Wu et al. 2018a), we apply three independent runs
on three random-seeded random splitting or scaffold split-
ting with a ratio for train/validation/test as 8:1:1. Details of
datasets and dataset splitting are deferred to Appendix B.1.

Baselines. We adopt three types of baselines:

• Supervised learning methods: GCN (Kipf and Welling
2017) and Weave (Kearnes et al. 2016) are two types
of graph convolutional methods. MPNN (Gilmer et al.
2017) and its variants DMPNN (Yang et al. 2019),
CMPNN (Song et al. 2020), CoMPT (Chen et al. 2021)
consider the edge features and strengthen the message
interactions between bonds and atoms during message
passing.

• Pre-trained methods: N-GRAM (Liu et al. 2019) con-
ducts node embeddings by predicting the node attributes.
Hu et al. (Hu et al. 2020) and GROVER (Rong et al.
2020) are pre-trained models incorporating both node-
level and graph-level pretext tasks.

• Graph contrastive learning baselines: InfoGraph (Sun
et al. 2020) maximizes the mutual information between
nodes and graphs. MICRO-Graph (Subramonian 2021) is
a motif-based contrastive method. GraphCL (You et al.
2020) constructs contrastive views of graph data via
hand-picking ad-hoc augmentations. JOAO (You et al.
2021) automates the augmentation selection. MoCL (Sun
et al. 2021) utilizes domain knowledge at two levels to
assist representation learning.

Evaluation Protocol. The evaluation process follows two
steps. We first pre-train the model and then evaluate the
learned model on downstream tasks under two protocols.

• Fine-tune protocol: To achieve the full potential of our
model, given graph embeddings output by the KCL en-
coder, we use an additional MLP to predict the property
of the molecule. Fine-tune parameters in the encoders
and the MLP.

• Linear Protocol: For comparison of our model and con-
trastive learning baselines, we fix the graph embeddings
from the pre-trained model, and train a linear classifier.

Implementation details. We use the Adam optimizer with
an initial learning rate of 0.0001 and batch size of 256. For
pre-training models, the running epoch is fixed to 20. The
temperature τ is set as 0.1. For downstream tasks, we use
early stopping on the validation set. We apply the random
search to obtain the best hyper-parameters based on the vali-
dation set. Our model is implemented with PyTorch (Paszke
et al. 2019) and Deep Graph Library (Wang et al. 2019). We
develop all codes on a Ubuntu Server with 4 GPUs (NVIDIA
GeForce 1080Ti). More experimental details are available in
Appendix C and D.

4.2 Performance Comparison (Q1 & Q2)
Performance under Fine-tune Protocol. We first exam-
ine whether the proposed KCL performs better than SOTA
methods. Table 2 displays the complete results of supervised
learning baselines and pre-trained methods, where the un-
derlined cells indicate the previous SOTAs, and the cells
with bold show the best result achieved by KCL. The Tox21,
SIDER, and ClinTox are all multiple-task learning tasks,
including totally 42 classification tasks. We also imple-
mented two versions of our KCL model, the original molec-



Task Classification (ROC-AUC) Regression (RMSE)
Dataset BBBP Tox21 ToxCast SIDER ClinTox BACE ESOL FreeSolv

#Molecules 2039 7831 8575 1427 1478 1513 1128 642
#Tasks 1 12 617 27 2 1 1 1

GCN (Kipf and Welling 2017) 0.877 0.772 0.650 0.638 0.807 0.854 1.068 2.900
Weave (Kearnes et al. 2016) 0.837 0.741 0.678 0.621 0.823 0.791 1.158 2.398
MPNN (Gilmer et al. 2017) 0.913 0.808 0.691 0.641 0.879 0.815 1.167 2.185
DMPNN (Yang et al. 2019) 0.919 0.826 0.718 0.632 0.897 0.852 0.980 2.177
CMPNN (Song et al. 2020) 0.927 0.806 0.738 0.636 0.902 0.869 0.798 0.956
CoMPT (Chen et al. 2021) 0.938 0.809 0.740 0.634 0.934 0.871 0.774 1.855
N-GRAM (Liu et al. 2019) 0.912 0.769 - 0.632 0.870 0.876 1.100 2.512
Hu et al. (Hu et al. 2020) 0.915 0.811 0.714 0.614 0.762 0.851 - -

GROVER (Rong et al. 2020) 0.940 0.831 0.737 0.658 0.944 0.894 0.831 1.544
KCL(GCN) 0.956 0.856 0.757 0.666 0.945 0.934 0.582 0.854

KCL(KMPNN) 0.961 0.859 0.740 0.671 0.958 0.924 0.732 0.795

Table 2: The property prediction performance (lower is better for regression) of KCL under the fine-tune protocol, compared
with supervised learning (first group) and pre-training methods (second group) baselines on 8 datasets.

Dataset BBBP Tox21 ToxCast SIDER ClinTox BACE
Node 0.843 0.728 0.633 0.577 0.635 0.746
Edge 0.833 0.715 0.619 0.605 0.630 0.657

Subgraph 0.815 0.727 0.625 0.583 0.603 0.629
Attribute 0.826 0.726 0.623 0.621 0.671 0.796

InfoGraph 0.611 0.615 0.562 0.502 0.458 0.594
MICRO 0.830 0.718 0.595 0.573 0.735 0.708

GraphCL 0.697 0.739 0.624 0.605 0.760 0.755
JOAO 0.714 0.750 0.632 0.605 0.813 0.773
MoCL 0.905 0.768 0.653 0.628 0.750 0.845

KCL(G) 0.929 0.821 0.696 0.620 0.909 0.902
KCL(K) 0.927 0.825 0.709 0.659 0.898 0.860

Table 3: The performance of KCL under the linear protocol
on 6 datasets, compared with contrastive learning baselines.
The metric is ROC-AUC.

ular graph with GCN encoder and the augmented molecular
graph with KMPNN as the encoder.

Table 2 offers the following observations: (1) KCL con-
sistently achieves the best performance on all datasets with
large margins. The overall relative improvement is 7.1%
on all datasets (2.6% on classification tasks and 20.4% on
regression tasks)2. This notable performance improvement
suggests the effectiveness of KCL for molecular property
prediction tasks. (2) In the small dataset FreeSolv with only
642 labeled molecules, KCL gains a 16.8% improvement
over SOTA baselines. This confirms the strength of KCL
since it can significantly help with tasks with very limited
label information.

Performance under Linear Protocol. We next study
whether the knowledge-guided graph augmentation in Mod-
ule 1 helps learn better molecular representations. Table 3
shows the comparison results of different augmentation
(node dropping, edge perturbation, subgraph extraction and
attribute masking) and contrastive learning methods. To be

2We use relative improvement to provide the unified descrip-
tions.

Figure 3: Performance of KCL with different settings under
the fine-tune protocol (lower is better for regression).

consistent with prior works and make the comparisons fair,
we use the linear protocol, which is exactly what base-
lines have done, to evaluate the performance on classifica-
tion datasets. Results on regression tasks are deferred to Ap-
pendix E.1.

Both versions of KCL produce better results compared
to alternative graph augmentation methods (the first group
in Table 3). This verifies our assumption that knowledge-
guided graph augmentation does not violate the biological
semantic in molecules and thus works better than other aug-
mentations. Moreover, KCL gains a 7.0% improvement over
the previous best contrastive learning methods (the second
group), which confirms that better representations of molec-
ular graphs could be obtained by incorporating fundamental
chemical domain knowledge and capturing microscopic as-
sociations between atoms.

4.3 Ablation Study (Q3 & Q4)
We then conducted ablation studies to investigate compo-
nents in Module 1 and 2 that influence the performance of
the proposed KCL framework.



Task Classification Regression
GCN(No contrast) 0.766 1.984

KMPNN(No contrast) 0.806 1.531
KCL(GIN) 0.849 0.718
KCL(GAT) 0.850 0.724
KCL(GCN) 0.852 0.718

KCL(RGCN) 0.831 1.008
KCL(MPNN) 0.833 0.927

KCL(KMPNN) 0.852 0.765

Table 4: Ablation results under the fine-tune protocol. Each
value represents the average result of the task, and the un-
derline marks the best in the group.

As shown in Figure 3, KCL with knowledge feature ini-
tialization and hard negative mining scheme (bar in yellow)
shows the best performance among all architectures. Mod-
els with random initialization and random negative sampling
denoted by “w/o ALL” almost always perform the worst.
Excluding any of these two components can easily result in
a decrease in performance. This illustrates that both knowl-
edge feature initialization and hard negative mining strat-
egy are necessary for KCL, because the former captures the
structural triple information, while the latter guides the en-
coders to generate more discriminative representations.

Since our graph encoders are pluggable, we replaced both
GCN, KMPNN with other architectures to explore the im-
pact of graph encoders. The results in Table 4 demonstrate
that applying different encoders (e.g., GIN (Xu et al. 2019),
GAT (Velickovic et al. 2018)) on original molecular graphs
has no significant impact on performance. In addition, we
ignore the different types of nodes and edges in augmented
graphs and replace KMPNN with previous heterogeneous
graph neural network (RGCN (Schlichtkrull et al. 2018))
and general message passing framework (MPNN (Gilmer
et al. 2017)). The comparisons reveal that KMPNN has bet-
ter expressive power by providing heterogeneous attentive
message passing for different types of knowledge on the
augmented molecular graphs. The specific values are de-
ferred to Appendix E.2 and E.3.

To investigate the contribution of the self-supervision
strategy, we compare the performances between KCL with
and without contrastive learning under the fine-tune proto-
col (the counterpart under linear protocol is deferred to Ap-
pendix E.4). We report the comparison results in Table 4.
The self-supervised contrastive learning leads to a perfor-
mance boost with an average increase of 8.5% on classi-
fication and 56.9% on regression over the model without
contrastive learning. This confirms that contrastive learning
can learn better representations by narrowing the distance
between the structural view and the knowledgeable view in
the latent space, and enhance the prediction performance of
downstream tasks.

4.4 Chemical Interpretability Analysis (Q5)
Finally, we explore the interpretability of our model by visu-
alizing the attention of each edge in a molecule. Specifically,
we extracted and normalized the atom’s attention weights to

Figure 4: An attention visualization example of different
types of neighbors (attributes and atoms) in the BBBP
dataset. The attention weights assigned for bonds connected
to the two C atoms are visualized on the right. The darker
the color, the higher the attention.

their neighbors from the last layer of KCL(KMPNN).
Figure 4 illustrates an example in the BBBP dataset (Mar-

tins et al. 2012). BBBP involves records of whether a com-
pound carries the permeability property of penetrating the
blood-brain barrier. As shown in the left part of the figure,
atoms tend to assign more attention to their electron affin-
ity, electronegativity, metallicity, and ionization. These at-
tributes are closely related to atoms’ ability to lose elec-
trons. The strength of the atom’s ability to gain or lose elec-
trons will largely affect the polarity of the molecule, thereby
affecting its permeability. In addition, more lively atomic
neighbors are easier to be noticed, as illustrated on the right
side of Figure 4. The element Cl has relatively higher elec-
tronegativity, so it has a stronger ability to obtain electrons.
Also, the hydroxyl group promotes hydrophilicity and thus
is assigned higher attention. Another interesting observation
is that fine-grained attributes (e.g., weight, radius) receive
less attention than coarse-grained attributes (e.g., electron
affinity, electronegativity, metallicity, and ionization). It is
because coarse-grained attributes are more abstract and in-
formative than fine-grained attributes, and therefore contain
richer domain knowledge. This is in line with hierarchical
machine learning where coarse-grained features at higher
levels can be seen as a summary of fine-grained features in
terms of target prediction. More examples and discussions
on other datasets are in Appendix E.5.

5 Conclusion and Future Work
This paper aims to incorporate fundamental domain knowl-
edge into molecular graph representation learning. We con-
struct Element KG to build microscopic connections be-
tween elements, and propose to utilize knowledge in the
KCL framework to enhance molecular graph contrastive
learning. We demonstrate the effectiveness of KCL under
both fine-tune and linear protocols, and experiments show
that KCL excels previous methods with better interpretation
and representation capability.

In the future, we intend to extend our work in several as-
pects. First, we would introduce different granularity of do-
main knowledge to enrich Chemical Element KG. Also, we
will improve the current KG with more description logics
defined in OWL2, such as more object properties and ax-
ioms. Third, we will open-source Chemical Element KG,
continue to improve its quality and expand its scale.
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Bajusz, D.; Rácz, A.; and Héberger, K. 2015. Why is Tani-
moto index an appropriate choice for fingerprint-based sim-
ilarity calculations? J. Cheminformatics, 7: 20:1–20:13.
Bemis, G. W.; and Murcko, M. A. 1996. The properties of
known drugs. 1. Molecular frameworks. Journal of medici-
nal chemistry, 39(15): 2887–2893.
Carse, J.; Carey, F. A.; and McKenna, S. J. 2021. Unsu-
pervised Representation Learning From Pathology Images
With Multi-Directional Contrastive Predictive Coding. In
ISBI, 1254–1258. IEEE.
Chen, J.; Zheng, S.; Song, Y.; Rao, J.; and Yang, Y.
2021. Learning Attributed Graph Representations with
Communicative Message Passing Transformer. CoRR,
abs/2107.08773.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. E.
2020. A Simple Framework for Contrastive Learning of Vi-
sual Representations. In ICML, volume 119 of Proceedings
of Machine Learning Research, 1597–1607. PMLR.
Cho, K.; van Merrienboer, B.; Bahdanau, D.; and Bengio,
Y. 2014. On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches. In SSST@EMNLP, 103–
111. Association for Computational Linguistics.
Delaney, J. S. 2004. ESOL: estimating aqueous solubility
directly from molecular structure. Journal of chemical in-
formation and computer sciences, 44(3): 1000–1005.
Delmas, M.; Filangi, O.; Paulhe, N.; Vinson, F.; Duperier,
C.; Garrier, W.; Saunier, P.-E.; Pitarch, Y.; Jourdan, F.; Gia-
comoni, F.; et al. 2021. Building a Knowledge Graph from
public databases and scientific literature to extract associa-
tions between chemicals and diseases. bioRxiv.
Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.;
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Y.; and Hjelm, R. D. 2019. Deep Graph Infomax. In ICLR
(Poster). OpenReview.net.
Vinyals, O.; Bengio, S.; and Kudlur, M. 2016. Order Mat-
ters: Sequence to sequence for sets. In ICLR (Poster).
Wang, M.; Zheng, D.; Ye, Z.; Gan, Q.; Li, M.; Song, X.;
Zhou, J.; Ma, C.; Yu, L.; Gai, Y.; Xiao, T.; He, T.; Karypis,
G.; Li, J.; and Zhang, Z. 2019. Deep Graph Library: A
Graph-Centric, Highly-Performant Package for Graph Neu-
ral Networks. arXiv preprint arXiv:1909.01315.
Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Ge-
niesse, C.; Pappu, A. S.; Leswing, K.; and Pande, V. 2018a.
MoleculeNet: a benchmark for molecular machine learning.
Chemical science, 9(2): 513–530.
Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018b. Unsu-
pervised Feature Learning via Non-Parametric Instance Dis-
crimination. In CVPR, 3733–3742. IEEE Computer Society.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In ICLR. OpenRe-
view.net.

Xu, Z.; Wang, S.; Zhu, F.; and Huang, J. 2017. Seq2seq
Fingerprint: An Unsupervised Deep Molecular Embedding
for Drug Discovery. In BCB, 285–294. ACM.
Yang, K.; Swanson, K.; Jin, W.; Coley, C. W.; Eiden, P.; Gao,
H.; Guzman-Perez, A.; Hopper, T.; Kelley, B.; Mathea, M.;
Palmer, A.; Settels, V.; Jaakkola, T. S.; Jensen, K. F.; and
Barzilay, R. 2019. Analyzing Learned Molecular Represen-
tations for Property Prediction. J. Chem. Inf. Model., 59(8):
3370–3388.
Yasunaga, M.; and Liang, P. 2020. Graph-based, Self-
Supervised Program Repair from Diagnostic Feedback. In
ICML, volume 119 of Proceedings of Machine Learning Re-
search, 10799–10808. PMLR.
You, Y.; Chen, T.; Shen, Y.; and Wang, Z. 2021. Graph
Contrastive Learning Automated. In ICML, volume 139 of
Proceedings of Machine Learning Research, 12121–12132.
PMLR.
You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; and Shen, Y.
2020. Graph Contrastive Learning with Augmentations. In
NeurIPS.



Appendix
A Details of KCL

A.1 Feature Initialization
The feature initialization contains two parts: 1) Atom / bond
feature initialization. We randomly initialize different vec-
tors for each type of atoms and bonds, with dimensions 128
and 64 respectively. We try a variety of different combina-
tions of dimensions, and find that the impact on performance
was not significant. Therefore, here we select the dimensions
when the performance is optimal. 2) Attribute / relation fea-
ture initialization. We use RotatE (Sun et al. 2019) which de-
fines each relation as a rotation in the complex vector space
to train Chemical Element KG. Its score function is formu-
lated as follows:

f(h, r, t) = ‖h ◦ r− t‖, (9)

where h, r, t denote the embedding of head, relation and tail
respectively, and ◦ is the Hadmard product. The dimensions
of attributes and relations are also 128 and 64.

A.2 Architecture of KMPNN

Figure 5: Architecture of KMPNN.

Figure 5 illustrates the architecture of KMPNN. We ap-
plied heterogeneous message passing (arrows in different
colors) to neighbors representing atoms and attributes in the
augmented molecular graph, respectively. In this way, the
node information corresponding to the same type of knowl-
edge share parameters during message passing. Moreover,
we extend the message passing process by the self-attention
mechanism. We use different parameters to compute atten-
tion coefficients between atoms and attributes, atoms and
atoms. This attentive message passing allows assigning dif-
ferent attention values to neighbor nodes.

A.3 GNN-based Encoder
As for the original molecular graph G, we apply a Graph
Neural Network (GNN)-based encoder to extract its graph-
level representation. Formally, the message passing opera-
tion in iteration k can be formulated as:

hk(v) = U(hk−1(v),AGG({hk−1(u)), ∀u ∈ Nv})), (10)

there are several ways of choosing AGG, such as mean, sum,
and max pooling. Then we convert them to graph embed-
ding with a readout function. Note that no constraints are im-
posed on the GNN architecture, and experiments have also
proved that different architectures have little impact on per-
formance. So here we adopt the most classic GCN (Kipf and
Welling 2017) architecture, combined with weighted sum
and max pooling to compute the final readout.

B Details about Experimental Setup
B.1 Dataset Description
Table 5 summarizes information of benchmark datasets, in-
cluding task type, dataset size, split type, and evaluation
metrics. We used 6 binary graph classification datasets and
2 binary graph regression datasets. #Tasks means the num-
ber of binary prediction tasks in each dataset. The details of
each dataset are listed below (Wu et al. 2018a):

Molecular Classification Datasets.
• BBBP (Martins et al. 2012) involves records of whether a

compound carries the permeability property of penetrat-
ing the blood-brain barrier.

• SIDER (Kuhn et al. 2016) records marketed drugs along
with their adverse drug reactions, also known as the Side
Effect Resource.

• ClinTox (Gayvert, Madhukar, and Elemento 2016) com-
pares drugs approved through FDA and drugs eliminated
due to toxicity during clinical trials.

• BACE (Subramanian et al. 2016) is collected for record-
ing compounds that could act as the inhibitors of human
β-secretase 1 (BACE-1) in the past few years.

• Tox21 (tox 2017) is a public database measuring the tox-
icity of compounds, which has been used in the 2014
Tox21 Data Challenge.

• ToxCast (Richard et al. 2016) contains multiple toxicity
labels over thousands of compounds by running high-
throughput screening tests on thousands of chemicals.

Molecular Regression Datasets.
• ESOL is a small dataset documenting the solubility of

compounds (Delaney 2004).
• FreeSolv (Mobley and Guthrie 2014) is selected from the

Free Solvation Database, which contains the hydration
free energy of small molecules in water from both exper-
iments and alchemical free energy calculations.

Dataset Splitting. As shown in Table 5, we apply the scaf-
fold splitting (Bemis and Murcko 1996) and random split-
ting as recommended in (Wu et al. 2018a) for all tasks on all
datasets. Scaffold splitting splits the molecules with distinct
two-dimensional structural frameworks into different sub-
sets. It is a more challenging but practical setting since the
test molecular can be structurally different from the training
set. Here we apply these splitting methods to construct the
train/validation/test sets.

B.2 Baselines
We adopt three types of baselines. The details of each base-
line are listed below:



Type Category Dataset # Tasks # Compounds Split Metric

Classification

Biophysics BBBP 1 2039 Scaffold ROC-AUC

Physiology

SIDER 27 1427 Random ROC-AUC
ClinTox 2 1478 Random ROC-AUC
BACE 1 1513 Scaffold ROC-AUC
Tox21 12 7831 Random ROC-AUC

ToxCast 617 8575 Random ROC-AUC

Regression Physical chemistry
FreeSolv 1 642 Random RMSE

ESOL 1 1128 Random RMSE

Table 5: Dataset information.

hyper-parameter Description Value
epoch the number of training epochs. 20
τ the temperature parameter. 0.1

batch size the input batch size. 256
lr the learning rate. 0.0001

GCN layers the number of layers of GCN. 2
GCN node hidden the node hidden size for GCN. 64

KMPNN step the step of message passing for KMPNN. 6
KMPNN node hidden the node hidden size for KMPNN. 64
KMPNN edge hidden the edge hidden size for KMPNN. 64

node out the node out size for GCN/KMPNN readout. 64
edge out the edge out size for GCN/KMPNN readout. 64

Table 6: The pre-train hyper-parameters.

Supervised Learning Methods.
• GCN (Kipf and Welling 2017) is a convolutional method

that focuses on learning the relationship with the nearest
neighbor node.

• Weave (Kearnes et al. 2016) transformed feature vectors
using pair features with distant atoms in addition to atom
features focused only on atoms.

• MPNN (Gilmer et al. 2017) utilized features from nodes
and edges, and summarize it into a framework.

• DMPNN (Yang et al. 2019) treated the molecular graph
as an edge-oriented directed structure, avoiding the infor-
mation redundancy during iterations.

• CMPNN (Song et al. 2020) introduced the node-edge in-
teraction module to leverage the node and edge attributes
during message passing.

• CoMPT (Chen et al. 2021) invoked a communicative
message-passing paradigm based on Transformer.

Pre-trained methods.
• N-GRAM (Liu et al. 2019) exploited the idea of N-gram

in NLP and conducted vertices embedding by predicting
the vertices attributes.

• Hu et al. (Hu et al. 2020)designed two pre-training tasks,
i.e., predicting neighborhood context and node attributes,
to learn meaningful node representations, then using
graph-level multi-task pre-training to refine graph repre-
sentations.

• GROVER (Rong et al. 2020) incorporated a Transformer-
style architecture and learned node embeddings by pre-
dicting contextual properties and motif information.

Graph Contrastive Learning Baselines.

• InfoGraph (Sun et al. 2020) maximized the mutual infor-
mation between nodes and graphs.

• MICRO-Graph (Subramonian 2021) is a motif-based
contrastive method.

• GraphCL (You et al. 2020) constructed contrastive views
of graph data via hand-picking augmentation.

• JOAO (You et al. 2021) automated the augmentation se-
lection in contrastive learning.

• MoCL (Sun et al. 2021) utilized domain knowledge at
both local- and global-level to assist representation learn-
ing.

C Implementation and Pre-training Details
We use PyTorch (Paszke et al. 2019) and Deep Graph Li-
brary (Wang et al. 2019) to implement KCL. Table 6 demon-
strates all the hyper-parameters of the pre-training model.
We develop all codes on a Ubuntu Server with 4 GPUs
(NVIDIA GeForce 1080Ti).

D Downstream Details
For downstream tasks, we use early stopping on the valida-
tion set. We try different hyper-parameter combinations via
random search to find the best results. Table 7 demonstrates
all the hyper-parameters of the fine-tuning model. All fine-
tuning tasks are run on a single GPU.



hyper-parameter Description Range
batch size the input batch size. 64,128,256

lr the learning rate. 0.0001∼0.1
hidden size the hidden size for predictor. 32,64,128

patience the patience for early stopping. 20

Table 7: The downstream hyper-parameters.

E Additional Experimental Results
E.1 Regression Results under Linear Protocol
To be consistent with prior contrastive learning works and
make the comparisons fair, we use the linear protocol to
evaluate the performance only on classification datasets in
main content. Table 8 depicts the additional results of the
performance on regression tasks. In order to understand it
intuitively, we also listed results under the fine-tune proto-
col.

Protocol Method ESOL FreeSolv

Linear
KCL(GCN) 0.709 1.085

KCL(KMPNN) 0.867 1.093

Fine-tune
KCL(GCN) 0.582 0.854

KCL(KMPNN) 0.736 0.795

Table 8: The performance of KCL under the linear protocol
and fine-tune protocol.

E.2 Effect of Different Settings
We investigate components that influence the performance
of the proposed KCL. Table 9 and Table 10 report spe-
cific values of the fine-tuning results in Figure 3. KCL
with knowledge feature initialization and negative sampling
scheme shows the best performance among all architectures.
Models without all of these two components almost always
perform the worst. Excluding any of these two components
results in a decrease in performance.

KCL(GCN)
Dataset w/oALL w/oInit w/oNS ALL
BBBP 0.939 0.941 0.953 0.956
Tox21 0.846 0.853 0.852 0.856

ToxCast 0.750 0.751 0.753 0.757
SIDER 0.650 0.663 0.665 0.666
CliTox 0.939 0.942 0.940 0.945
BACE 0.906 0.909 0.911 0.934
ESOL 0.584 0.589 0.599 0.582

FreeSolv 0.833 0.911 0.896 0.854
Ave(Cls) 0.840 0.843 0.845 0.852
Ave(Reg) 0.709 0.750 0.748 0.718

Table 9: Ablation results on molecular graphs.

E.3 Effect of Different Encoders
Since our graph encoder module is pluggable, we explore
the impact of different encoders. We replace GCN, KMPNN

KCL(KMPNN)
Dataset w/oA w/oInit w/oNS ALL
BBBP 0.943 0.945 0.956 0.961
Tox21 0.840 0.853 0.856 0.859

ToxCast 0.737 0.735 0.739 0.740
SIDER 0.650 0.659 0.661 0.671
CliTox 0.951 0.956 0.952 0.958
BACE 0.919 0.921 0.920 0.924
ESOL 0.740 0.735 0.739 0.732

FreeSolv 0.820 0.798 0.800 0.795
Ave(Cls) 0.840 0.845 0.847 0.852
Ave(Reg) 0.780 0.765 0.770 0.764

Table 10: Ablation results on the augmented molecular
graphs.

with GIN and GAT, RGCN and MPNN, respectively. Ta-
ble 11 shows the specific values of performance. The re-
sults demonstrate that applying different GNN-based en-
coders on original molecular graphs has no significant im-
pact on performance. Furthermore, KMPNN has a better ex-
pressive power on the augmented molecular graphs than the
previous heterogeneous GNN and general message passing
framework.

E.4 Effect of Contrastive Learning
We investigate the contribution of contrastive learning strat-
egy. Table 12 depicts the additional results of the comparison
of KCL(KMPNN) and KMPNN without contrastive learn-
ing under fine-tune and linear protocols.

Similar to performance under the fine-tune protocol, con-
trastive learning leads to a performance boost with an av-
erage of 0.7% on classification and 76.5% on regression
over the model without contrastive learning. This reinforces
our claim that contrastive learning can incorporate domain
knowledge into molecular representations and enhance the
prediction performance of downstream tasks.

E.5 Chemical Interpretability Analysis
We visualize the attention of each edge in a molecule to
explore the interpretability of KMPNN. Figure 6 illustrates
another example in the BBBP dataset. Similar to Figure 4,
atoms tend to assign more attention to their electron affin-
ity, electronegativity, metalicity, and ionization, which are
closely related to atoms’ ability to lose electrons. Also, more
lively atomic neighbors are easier to be noticed, as shown on
the right side of Figure 6.

Figure 6: Another example in the BBBP dataset.



Task Classification Regression
Dataset BBBP Tox21 ToxCast SIDER ClinTox BACE ESOL FreeSolv

KCL(GIN) 0.954 0.854 0.748 0.660 0.945 0.932 0.580 0.856
KCL(GAT) 0.956 0.857 0.750 0.663 0.942 0.930 0.588 0.860
KCL(GCN) 0.956 0.856 0.757 0.666 0.945 0.934 0.582 0.854

KCL(R-GCN) 0.936 0.830 0.735 0.637 0.948 0.898 0.780 1.236
KCL(MPNN) 0.940 0.835 0.738 0.640 0.950 0.895 0.743 1.111

KCL(KMPNN) 0.961 0.859 0.740 0.671 0.958 0.924 0.732 0.795

Table 11: Results comparison with different graph encoders.

Fine-tune Protocol Linear Protocol
KCL KMPNN Abs.Imp. KCL KMPNN Abs.Imp.

BBBP 0.961 0.915 +0.046 0.927 0.915 +0.012
Tox21 0.859 0.804 +0.055 0.825 0.804 +0.021

ToxCast 0.740 0.725 +0.015 0.709 0.725 -0.016
SIDER 0.671 0.645 +0.026 0.659 0.645 +0.014
ClinTox 0.958 0.892 +0.066 0.898 0.892 +0.006
BACE 0.924 0.856 +0.068 0.860 0.856 +0.004
ESOL 0.736 0.895 +0.159 0.736 0.895 +0.159

FreeSolv 0.795 2.167 +1.372 0.795 2.167 +1.372
Ave(Cls) 0.852 0.806 +0.046 0.813 0.806 +0.007
Ave(Reg) 0.765 1.531 +0.766 0.766 1.531 + 0.765

Table 12: Results comparison between KCL(KMPNN) and KMPNN without contrastive learning.

Figure 7: Attention visualization examples of attributes in
the BACE and ToxCast datasets.

Figure 7 shows attention visualization examples on BACE
and ToxCast datasets. Most atoms have similar characteris-
tics, here we show two examples of them. Consistent with
the conclusion obtained on the BBBP dataset, we observe
that fine-grained attributes (e.g., weight, radius) receive less
attention than coarse-grained attributes (e.g., electronega-
tivity, conductivity, density, Ionization, metallicity, state,
family). This confirms our claim that coarse-grained at-
tributes are more abstract and informative than fine-grained
attributes, and therefore contain richer domain knowledge.
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